Examen de Matemáticas 4º de ESO Febrero 2009

Problema 1 Calcular

- 1. Reducir el ángulo $3156^{\rm o}$ a un número de vueltas y su valor en la primera vuelta.
- 2. Pasar $\frac{7\pi}{6}$ de radianes a grados.
- 3. Pasar 112°10′11″ de grados a radianes.

Solución:

- 1. $3156^{\circ} = 8 \cdot 360^{\circ} + 276^{\circ}$
- 2. $\frac{7\pi}{6}$ radianes= 210°
- 3. $112^{\circ}10'11'' = 0,623\pi$ radianes

Problema 2 Deducir las razones trigonométricas de 30° **Solución:**

$$\sin 30^{\circ} = \frac{1}{2}$$
, $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$, $\tan 30^{\circ} = \frac{\sqrt{3}}{3}$

Ver teoría.

Problema 3 Conociendo las razones trigonométricas de 30° calcular las de 210°.

Solución

$$210^{\circ} = 180^{\circ} + 30^{\circ}$$

$$\sin 210^{\circ} = -\sin 30^{\circ} = -\frac{1}{2}, \quad \cos 210^{\circ} = -\cos 210^{\circ} = -\frac{\sqrt{3}}{2}$$

$$\tan 210^{\circ} = \frac{\sqrt{3}}{3}$$

Problema 4 Sabiendo que $\tan \alpha = 2$ y que α \in tercer cuadrante, calcular el resto de las razones trigonométricas.

Solución:

$$\tan \alpha = 2 \Longrightarrow \cot \alpha = \frac{1}{2}$$

$$1 + \cot^2 \alpha = \csc^2 \alpha \Longrightarrow \csc \alpha = -\frac{\sqrt{5}}{2}, \quad \sin \alpha = -\frac{2\sqrt{5}}{5}$$

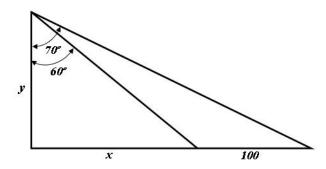
$$\tan^2 \alpha + 1 = \sec^2 \alpha \Longrightarrow \sec \alpha = -\sqrt{5}, \quad \cos \alpha = -\frac{\sqrt{5}}{5}$$

Problema 5 En un triángulo rectángulo se conocen un ángulo $A=40^{\rm o}$ y su hipotenusa $c=5\,cm$. Calcular sus lados y ángulos restantes. **Solución:**

$$B = 90^{\circ} - 40^{\circ} = 50^{\circ}$$

$$\sin A = \frac{a}{c} \Longrightarrow a = 3,214 \, cm$$

$$\sin B = \frac{b}{c} \Longrightarrow b = 3,830 \, cm$$


$$C = 90^{\circ}$$

Problema 6 Calcular el área de un octógono regular de $12\,m$ de lado.

Solución:
$$\frac{360^{\circ}}{8} = 45^{\circ} \Longrightarrow \tan 22^{\circ}30' = \frac{6}{h} \Longrightarrow h = 14,485 \, m$$

$$S = \frac{p \cdot h}{2} = \frac{8 \cdot 12 \cdot 14,485}{2} = 695,294 \, m^2$$
 donde p es el perímetro y h es la apotema.

Problema 7 Gemma, María, Alba, Mónica, Cintia, Cristina y Nerea están pasando unas merecidas vacaciones en la costa asturiana. Se encontraban en un pequeño pueblo llamado Poó de LLanes, donde se acercaron a disfrutar de los bellos acantilados de su costa, el paisaje era impresionante. Desde un prado verde esmeralda podían disfrutar del panorama de un mar rabioso y enfurecido. Luchando contra las olas había un pequeño barco pesquero que se afanaba por llegar a la costa en dirección hacia ellas; lo veían con un ángulo de 70°. Se quedaron ensimismadas observando las maniobras y el lento avance durante un rato y ahora lo vieron con un ángulo de 60° (ángulos medidos sobre la vertical del acantilado). María, buena conocedora de aquel lugar y tomando como referencia los islotes, dijo a sus amigas que el barco había avanzado 100 metros entre las dos medidas angulares.

Gemma preguntó a sus amigas: ¿qué altura tendrá el acantilado? ¿qué distancia le queda por recorrer al barco para llegar hasta la base del acantilado? Solución:

$$\begin{cases} \tan 70^{\circ} = \frac{x+100}{y} \\ \tan 60^{\circ} = \frac{x}{y} \end{cases} \Longrightarrow \begin{cases} x = 170, 57 \text{ m} \\ y = 98, 48 \text{ m} \end{cases}$$