Examen de Matemáticas 2ºBachillerato(CS) Diciembre 2022

Problema 1 Se considera el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$\begin{cases} 2ax + z = 1\\ ax - y + z = 0\\ ay + z = a + 1 \end{cases}$$

- a) Discuta la compatibilidad del sistema para diferentes valores de a.
- b) Resuelva el sistema para a = 0.

Solución:

a)

$$\overline{A} = \begin{pmatrix} 2a & 0 & 1 & 1 \\ a & -1 & 1 & 0 \\ 0 & a & 1 & a+1 \end{pmatrix} \quad |A| = -a(a+2) = 0 \Longrightarrow$$

Si $a \neq 0$ y $a \neq -2 \Longrightarrow \text{Rango}(A) = 3 = \text{Rango}(\overline{A}) = n^0$ de incógnitas y sería un sistema compatible determinado.

Si a=0:

$$\overline{A} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{bmatrix} F_1 = F_3 \end{bmatrix} \Longrightarrow \text{Sistema Compatible Indeterminado}$$

Si a = -2:

$$\overline{A} = \begin{pmatrix} -4 & 0 & 1 & 1 \\ -2 & -1 & 1 & 0 \\ 0 & -2 & 1 & -1 \end{pmatrix} = \begin{bmatrix} F_1 \\ 2F_2 - F_1 \\ F_3 \end{bmatrix} = \begin{pmatrix} -4 & 0 & 1 & 1 \\ 0 & -2 & 1 & -1 \\ 0 & -2 & 1 & -1 \end{pmatrix} =$$

$$\begin{bmatrix} F_1 \\ F_2 \\ F_3 - F_2 \end{bmatrix} = \begin{pmatrix} -4 & 0 & 1 & 1 \\ 0 & -2 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Longrightarrow \text{Sistema Compatible Indeterminado}$$

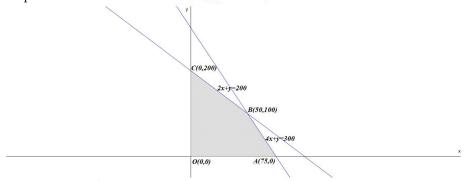
b) Si a = 0:

$$\begin{cases} z = 1 \\ -y + z = 0 \\ z = 1 \end{cases} \implies \begin{cases} x = \lambda \\ y = 1 \\ z = 1 \end{cases}$$

Problema 2 Con el objetivo de maximizar beneficios, un obrador cántabro amplía su producción diaria máxima hasta las 400 tartas de queso y 900 quesadas, con las que elabora dos tipos de pack, A y B. El pack A contiene 4 tartas de queso y 12 quesadas, y le confiere al obrador un beneficio neto de $44 \in$. El pack B contiene 2 tartas de queso y 3 quesadas, y le confiere al obrador un beneficio neto de $16 \in$.

- a) Plantee la función objetivo y el conjunto de restricciones que describen el problema.
- b) Dibuje la región factible en el plano, calculando sus vértices.
- c) ¿Cuántos packs de cada tipo debe producir el obrador en un día para que el beneficio obtenido sea máximo?
- d) ¿A cuánto asciende dicho beneficio?

Solución:


Sea x el nº de pack A e y el nº de pack B.

	tartas	quesadas	beneficio 44		
A	4	12			
B	2	3	16		
	≤ 400	< 900			

a)
$$f(x,y) = 44x + 16y$$
 sujeto a

$$\begin{cases} 4x + 2y \le 400 \\ 12x + 3y \le 900 \\ x, y \ge 0 \end{cases} \implies \begin{cases} 2x + y \le 200 \\ 4x + y \le 300 \\ x, y \ge 0 \end{cases}$$

b) Representación:

Los vértices a estudiar serán:

c) Sustituyendo en la función objetivo f(x,y) = 44x + 16y:

Solución por solver:

$$\begin{cases} f(0,0) = 0 \\ f(75,0) = 3300 \\ f(50,100) = 3800 \end{cases} \Longrightarrow \\ f(0,200) = 3200 \\ \text{debe de producir 50 pack A y 100 pack B} \\ \text{para obtener el máximo beneficio.}$$

	A	В	C	D	E	F	G	H
		Objetivo	3800					
		tartas	quesadas	R3	R4	F(x,y)		Numero de
	pack A	4	12		0	44		50
	pack B	2	3	0	0	16		100
		tartas	quesadas	R3	R4	F(x,y)		
	pack A	200	600			2200		
	pack B	200	300			1600		
0		400	900	0	0	3800		
1 2 3 4	Parámetros de Solver Establecer objeti	vo: SFS1	ō			1	×	
5	Para: (a) Má	x OMin			0			
3	SHS4:SHSS							
	S <u>uj</u> eto a las restr							
7								
0	SCS10 <= 400 SCS10 <= 900					Agregar		

d) El beneficio máximo es de 3800 \in .